Information, including a link to webinar registration will be posted on the Council's website at: https://safmc.net/safmc-seminar-series/ as it becomes available.

Council address: South Atlantic Fishery Management Council, 4055 Faber Place Drive, Suite 201, N Charleston, SC 29405.

FOR FURTHER INFORMATION CONTACT: Kim Iverson, Public Information Officer, SAFMC; phone: (843) 571–4366; email: *kim.iverson@safmc.net.*

SUPPLEMENTARY INFORMATION: The Council will host a presentation on Fish Acoustic Detection Algorithm Research (FADAR) by staff from Florida Atlantic University Harbor Branch Oceanographic Institute. The presentation will present information on FADAR, a method to identify grouper and other fish potentially spawning or communicating. FADAR has been used to identify Nassau grouper in the South Atlantic region. A question-and-answer session will follow the presentation. Members of the public will have the opportunity to participate in the discussion. The presentation is for informational purposes only and no management actions will be taken.

Special Accommodations

The meeting is physically accessible to people with disabilities. Requests for auxiliary aids should be directed to the Council office (see **ADDRESSES**) 3 days prior to the meeting.

Note: The times and sequence specified in this agenda are subject to change.

Authority: 16 U.S.C. 1801 et seq.

Dated: March 19, 2024.

Diane M. DeJames-Daly,

Acting Deputy Director, Office of Sustainable Fisheries, National Marine Fisheries Service. [FR Doc. 2024–06117 Filed 3–21–24; 8:45 am]

BILLING CODE 3410-22-P

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

[RTID 0648-XD482]

Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Geophysical Surveys Related to Oil and Gas Activities in the Gulf of Mexico

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.

ACTION: Notice; issuance of Letter of Authorization.

SUMMARY: In accordance with the Marine Mammal Protection Act (MMPA), as amended, its implementing regulations, and NMFS' MMPA Regulations for Taking Marine Mammals Incidental to Geophysical Surveys Related to Oil and Gas Activities in the Gulf of Mexico, notification is hereby given that a Letter of Authorization (LOA) has been issued to Shell Offshore Inc. (Shell) for the take of marine mammals incidental to geophysical survey activity in the Gulf of Mexico.

DATES: The LOA is effective from July 1, 2024, through June 30, 2025.

ADDRESSES: The LOA, LOA request, and supporting documentation are available online at: *https://*

www.fisheries.noaa.gov/action/ incidental-take-authorization-oil-andgas-industry-geophysical-surveyactivity-gulf-mexico. In case of problems accessing these documents, please call the contact listed below (see FOR

FURTHER INFORMATION CONTACT).
FOR FURTHER INFORMATION CONTACT:

Jenna Harlacher, Office of Protected Resources, NMFS, (301) 427–8401.

SUPPLEMENTARY INFORMATION:

Background

Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361 et seq.) direct the Secretary of Commerce to allow, upon request, the incidental, but not intentional, taking of small numbers of marine mammals by U.S. citizens who engage in a specified activity (other than commercial fishing) within a specified geographical region if certain findings are made and either regulations are issued or, if the taking is limited to harassment, a notice of a proposed authorization is provided to the public for review.

An authorization for incidental takings shall be granted if NMFS finds that the taking will have a negligible impact on the species or stock(s), will not have an unmitigable adverse impact on the availability of the species or stock(s) for subsistence uses (where relevant), and if the permissible methods of taking and requirements pertaining to the mitigation, monitoring and reporting of such takings are set forth. NMFS has defined "negligible impact" in 50 CFR 216.103 as an impact resulting from the specified activity that cannot be reasonably expected to, and is not reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival.

Except with respect to certain activities not pertinent here, the MMPA defines "harassment" as any act of pursuit, torment, or annoyance which (i)

has the potential to injure a marine mammal or marine mammal stock in the wild (Level A harassment); or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering (Level B harassment).

On January 19, 2021, we issued a final rule with regulations to govern the unintentional taking of marine mammals incidental to geophysical survey activities conducted by oil and gas industry operators, and those persons authorized to conduct activities on their behalf (collectively "industry operators"), in U.S. waters of the Gulf of Mexico (GOM) over the course of 5 vears (86 FR 5322, January 19, 2021). The rule was based on our findings that the total taking from the specified activities over the 5-year period will have a negligible impact on the affected species or stock(s) of marine mammals and will not have an unmitigable adverse impact on the availability of those species or stocks for subsistence uses. The rule became effective on April 19, 2021.

Our regulations at 50 CFR 217.180 et seq. allow for the issuance of LOAs to industry operators for the incidental take of marine mammals during geophysical survey activities and prescribe the permissible methods of taking and other means of effecting the least practicable adverse impact on marine mammal species or stocks and their habitat (often referred to as mitigation), as well as requirements pertaining to the monitoring and reporting of such taking. Under 50 CFR 217.186(e), issuance of an LOA shall be based on a determination that the level of taking will be consistent with the findings made for the total taking allowable under these regulations and a determination that the amount of take authorized under the LOA is of no more than small numbers.

Summary of Request and Analysis

Shell plans to conduct a 4D towed seismic ocean bottom node (OBN) survey over Alaminos Canyon Lease Block 857 and the surrounding 42 lease blocks, with approximate water depths ranging from 1,500 to 3,000 meters (m). See Section F of the LOA application for a map of the area. Shell anticipates using one source vessel, towing an airgun array source consisting of 32 elements, with a total volume of 5,110 cubic inches (in³). Please see Shell's application for additional detail.

Consistent with the preamble to the final rule, the survey effort proposed by

Shell in its LOA request was used to develop LOA-specific take estimates based on the acoustic exposure modeling results described in the preamble (86 FR 5398, January 19, 2021). In order to generate the appropriate take number for authorization, the following information was considered: (1) survey type; (2) location (by modeling zone 1); (3) number of days; and (4) season.2 The acoustic exposure modeling performed in support of the rule provides 24-hour exposure estimates for each species, specific to each modeled survey type in each zone and season.

Summary descriptions of modeled survey geometries (i.e., 2D, 3D NAZ, 3D WAZ, Coil) are available in the preamble to the proposed rule (83 FR 29212, 29220, June 22, 2018). In this case, Coil was selected as the best available proxy survey type in this case because of the spatial coverage of the planed survey is most similar to the Coil survey patter. The planned 4D OBN survey will involve a single source vessel sailing along closely spaced survey lines approximately 20 kilometers (km) in length and 100 m apart. The "racetrack" path taken by the vessel will mean that consecutive survey lines sailed will be approximately 400 m apart. With this relatively tight line spacing and at a survey speed of 4.5 knots (8.3 km per hour), the area covered by this single source vessel will be about 110 square kilometer (km²) per week, or 15.7 km² per day. The coil survey pattern was assumed to cover approximately 144 km² per day (compared with approximately 795 km2, 199 km2, and 845 km² per day for the 2D, 3D NAZ, and 3D WAZ survey patterns, respectively). Among the different parameters of the modeled survey patterns (e.g., area covered, line spacing, number of sources, shot interval, total simulated pulses), NMFS considers area covered per day to be most influential on daily modeled exposures exceeding Level B harassment criteria. Although Shell is not proposing to perform a survey using the coil geometry, its planned 4D OBN survey is expected to cover approximately 16 km² per day, meaning that the Coil proxy is most representative of the effort planned by Shell in terms of predicted Level B harassment exposures.

All available acoustic exposure modeling results assume use of a 72-

element, 8,000 in³ array. Thus, take numbers authorized through the LOA are considered conservative due to differences in the airgun array (32 elements, 5,110 in³), as compared to the source modeled for the rule.

The survey will take place over approximately 70 days, including 50 days of sound source operation. The survey would occur within Zone 7 for 49 days and Zone 6 for 1 day. The seasonal distribution of survey days is not known in advance. Therefore, the take estimates for each species are based on the season that produces the greater value.

For some species, take estimates based solely on the modeling yielded results that are not realistically likely to occur when considered in light of other relevant information available during the rulemaking process regarding marine mammal occurrence in the GOM. The approach used in the acoustic exposure modeling, in which seven modeling zones were defined over the U.S. GOM, necessarily averages finescale information about marine mammal distribution over the large area of each modeling zone. Thus, although the modeling conducted for the rule is a natural starting point for estimating take, the rule acknowledged that other information could be considered (see, e.g., 86 FR 5442, January 19, 2021), discussing the need to provide flexibility and make efficient use of previous public and agency review of other information and identifying that additional public review is not necessary unless the model or inputs used differ substantively from those that were previously reviewed by NMFS and the public). For this survey, NMFS has other relevant information reviewed during the rulemaking that indicates use of the acoustic exposure modeling to generate a take estimate for one marine mammal species produces results inconsistent with what is known regarding its occurrence in the GOM. Accordingly, we have adjusted the calculated take estimates for the species as described below.

Killer whales are the most rarely encountered species in the GOM, typically in deep waters of the central GOM (Roberts et al., 2015; Maze-Foley and Mullin, 2006). The approach used in the acoustic exposure modeling, in which seven modeling zones were defined over the U.S. GOM, necessarily averages fine-scale information about marine mammal distribution over the large area of each modeling zone. NMFS has determined that the approach results in unrealistic projections regarding the likelihood of encountering killer whales.

As discussed in the final rule, the density models produced by Roberts et al. (2016) represent the output of models derived from multi-year observations and associated environmental parameters that incorporate corrections for detection bias. However, in the case of killer whales, the model is informed by few data, as indicated by the coefficient of variation associated with the abundance predicted by the model (0.41, the second-highest of any GOM species model; Roberts et al., 2016). The model's authors noted the expected non-uniform distribution of this rarelyencountered species (as discussed above) and expressed that, due to the limited data available to inform the model, it "should be viewed cautiously" (Roberts et al., 2015).

NOAA surveys in the GOM from 1992–2009 reported only 16 sightings of killer whales, with an additional 3 encounters during more recent survey effort from 2017–18 (Waring et al., 2013; https://www.boem.gov/gommapps). Two other species were also observed on fewer than 20 occasions during the 1992-2009 NOAA surveys (Fraser's dolphin and false killer whale 3). However, observational data collected by protected species observers (PSO) on industry geophysical survey vessels from 2002-2015 distinguish the killer whale in terms of rarity. During this period, killer whales were encountered on only 10 occasions, whereas the next most rarely encountered species (Fraser's dolphin) was recorded on 69 occasions (Barkaszi and Kelly, 2019). The false killer whale and pygmy killer whale were the next most rarely encountered species, with 110 records each. The killer whale was the species with the lowest detection frequency during each period over which PSO data were synthesized (2002-2008 and 2009-2015). This information qualitatively informed our rulemaking process, as discussed at 86 FR 5334 (January 19, 2021), and similarly informs our analysis here.

The rarity of encounters during seismic surveys is not likely to be the product of high bias on the probability of detection. Unlike certain cryptic species with high detection bias, such as *Kogia* spp. or beaked whales, or deepdiving species with high availability bias, such as beaked whales or sperm whales, killer whales are typically available for detection when present and are easily observed. Roberts *et al.* (2015) stated that availability is not a

¹For purposes of acoustic exposure modeling, the GOM was divided into seven zones. Zone 1 is not included in the geographic scope of the rule.

² For purposes of acoustic exposure modeling, seasons include Winter (December–March) and Summer (April–November).

³ However, note that these species have been observed over a greater range of water depths in the GOM than have killer whales.

major factor affecting detectability of killer whales from shipboard surveys, as they are not a particularly long-diving species. Baird et al. (2005) reported that mean dive durations for 41 fish-eating killer whales for dives greater than or equal to 1 minute in duration was 2.3-2.4 minutes, and Hooker et al. (2012) reported that killer whales spent 78 percent of their time at depths between 0–10 m. Similarly, Kvadsheim et al. (2012) reported data from a study of 4 killer whales, noting that the whales performed 20 times as many dives 1-30 m in depth than to deeper waters, with an average depth during those most common dives of approximately 3 m.

In summary, killer whales are the most rarely encountered species in the GOM and typically occur only in particularly deep water (≤700 m). This survey would take place in deep waters that would overlap with depths in which killer whales typically occur. While this information is reflected through the density model informing the acoustic exposure modeling results, there is relatively high uncertainty associated with the model for this species, and the acoustic exposure modeling applies mean distribution data over areas where the species is in fact less likely to occur. NMFS' determination in reflection of the data discussed above, which informed the final rule, is that use of the generic acoustic exposure modeling results for killer whales will generally result in estimated take numbers that are inconsistent with the assumptions made in the rule regarding expected killer whale take (86 FR 5403, January 19, 2021).

In past authorizations, NMFS has often addressed situations involving the

low likelihood of encountering a rare species, such as killer whales in the GOM, through authorization of take of a single group of average size (*i.e.*, representing a single potential encounter). See 83 FR 63268, December 7, 2018. See also 86 FR 29090, May 28, 2021 and 85 FR 55645, September 9, 2020. For the reasons expressed above, NMFS determined that a single encounter of killer whales is more likely than the model-generated estimates and has authorized take associated with a single group encounter (*i.e.*, up to seven animals).

Based on the results of our analysis, NMFS has determined that the level of taking expected for this survey and authorized through the LOA is consistent with the findings made for the total taking allowable under the regulations. See Table 1 in this notice and Table 9 of the rule (86 FR 5322, January 19, 2021).

Small Numbers Determination

Under the GOM rule, NMFS may not authorize incidental take of marine mammals in an LOA if it will exceed "small numbers." In short, when an acceptable estimate of the individual marine mammals taken is available, if the estimated number of individual animals taken is up to, but not greater than, one-third of the best available abundance estimate, NMFS will determine that the numbers of marine mammals taken of a species or stock are small. For more information please see NMFS' discussion of the MMPA's small numbers requirement provided in the final rule (86 FR 5438, January 19, 2021).

The take numbers for authorization are determined as described above in

the Summary of Request and Analysis section. Subsequently, the total incidents of harassment for each species are multiplied by scalar ratios to produce a derived product that better reflects the number of individuals likely to be taken within a survey (as compared to the total number of instances of take), accounting for the likelihood that some individual marine mammals may be taken on more than 1 day (see 86 FR 5404, January 19, 2021). The output of this scaling, where appropriate, is incorporated into adjusted total take estimates that are the basis for NMFS' small numbers determinations, as depicted in table 1.

This product is used by NMFS in making the necessary small numbers determinations through comparison with the best available abundance estimates (see discussion at 86 FR 5391, January 19, 2021). For this comparison, NMFS' approach is to use the maximum theoretical population, determined through review of current stock assessment reports (SAR; https:// www.fisheries.noaa.gov/national/ marine-mammal-protection/marinemammal-stock-assessments) and modelpredicted abundance information (https://seamap.env.duke.edu/models/ *Duke/GOM/*). For the latter, for taxa where a density surface model could be produced, we use the maximum mean seasonal (i.e., 3-month) abundance prediction for purposes of comparison as a precautionary smoothing of monthto-month fluctuations and in consideration of a corresponding lack of data in the literature regarding seasonal distribution of marine mammals in the GOM. Information supporting the small numbers determinations is provided in Table 1.

TABLE 1—TAKE ANALYSIS

Species	Authorized take	Scaled take 1	Abundance ²	Percent abundance
Rice's whale 3	0	n/a	51	n/a
Sperm whale	284	120	2,207	5.4
Kogia spp.	151	57	4,373	1.6
Beaked whales	2,382	241	3,768	6.4
Rough-toothed dolphin	443	127	4,853	2.6
Bottlenose dolphin	62	18	176,108	0
Clymene dolphin	1,190	341	11,895	2.9
Atlantic spotted dolphin	⁵ 26	6	74,785	0
Pantropical spotted dolphin	11,312	3,246	102,361	3.2
Spinner dolphin	266	76	25,114	0.3
Striped dolphin	601	172	5,229	3.3
Fraser's dolphin	190	54	1,665	3.3
Risso's dolphin	194	57	3,764	1.5
Melon-headed whale	757	223	7,003	3.2
Pygmy killer whale	360	106	2,126	5.0
False killer whale	412	121	3,204	3.8
Killer whale	7	n/a	267	2.6

TABLE 1—TAKE ANALYSIS—Continued

Species	Authorized take	Scaled take 1	Abundance ²	Percent abundance
Short-finned pilot whale	77	23	1,981	1.1

¹ Scalar ratios were applied to "Authorized Take" values as described at 86 FR 5322, 5404 (January 19, 2021) to derive scaled take numbers shown here.

³The final rule refers to the GOM Bryde's whale (*Balaenoptera edeni*). These whales were subsequently described as a new species, Rice's whale (*Balaenoptera ricei*) (Rosel et al., 2021).

⁴ Includes 13 takes by Level A harassment and 138 takes by Level B harassment. Scalar ratio is applied to takes by Level B harassment only;

small numbers determination made on basis of scaled Level B harassment take plus authorized Level A harassment take.

⁵ Modeled take of 21 increased to account for potential encounter with group of average size Maze-Foley and Mullin, 2006)

Based on the analysis contained herein of Shell's proposed survey activity described in its LOA application and the anticipated take of marine mammals, NMFS finds that small numbers of marine mammals will be taken relative to the affected species or stock sizes (*i.e.*, less than one-third of the best available abundance estimate) and therefore the taking is of no more than small numbers.

Authorization

NMFS has determined that the level of taking for this LOA request is consistent with the findings made for the total taking allowable under the incidental take regulations and that the amount of take authorized under the LOA is of no more than small numbers. Accordingly, we have issued an LOA to Shell authorizing the take of marine mammals incidental to its geophysical survey activity, as described above.

Dated: March 18, 2024.

Kimberly Damon-Randall,

 $\label{lem:protected} \begin{tabular}{ll} Director, Of fice of Protected Resources, \\ National Marine Fisheries Service. \end{tabular}$

[FR Doc. 2024–06066 Filed 3–21–24; 8:45 am]

BILLING CODE 3510-22-P

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

[RTID 0648-XD821]

Mid-Atlantic Fishery Management Council (MAFMC); Public Meetings

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.

ACTION: Notice of public meetings.

SUMMARY: The Mid-Atlantic Fishery Management Council (Council) will hold public meetings of the Council including a joint session with the Atlantic States Marine Fisheries

Commission (ASMFC) Summer Flounder, Scup, and Black Sea Bass Management Board.

DATES: The meetings will be held Tuesday, April 9 through Thursday, April 11, 2024. For agenda details, see **SUPPLEMENTARY INFORMATION**.

ADDRESSES: This meeting will be an inperson meeting with a virtual option. Council members, other meeting participants, and members of the public will have the option to participate in person at The Sheraton Atlantic City Convention Center Hotel or virtually via Webex webinar. Webinar connection instructions and briefing materials will be available at: https://www.mafmc.org/briefing/april-2024.

Meeting address: Sheraton Atlantic City Convention Center Hotel, 2 Convention Blvd., Atlantic City, NJ 08401.

Council address: Mid-Atlantic Fishery Management Council, 800 N State St., Suite 201, Dover, DE 19901; telephone: (302) 674–2331; www.mafmc.org.

FOR FURTHER INFORMATION CONTACT:

Christopher M. Moore, Ph.D. Executive Director, Mid-Atlantic Fishery Management Council; telephone: (302) 526–5255. The Council's website, www.mafmc.org, also has details on the meeting location, proposed agenda, webinar listen-in access, and briefing materials.

SUPPLEMENTARY INFORMATION: The following items are on the agenda, although agenda items may be addressed out of order (changes will be noted on the Council's website when possible.)

Tuesday, April 9, 2024

Proposed Rule To Update Regulations Associated With the Magnuson-Stevens Fishery Conservation and Management Act's Confidentiality Requirements— NOAA Fisheries Staff

Presentation and opportunity for questions/feedback.

Offshore Wind Fisheries Compensation Programs

Summary of fishery information requirement for compensation eligibility.

Data needs and challenges. Consider potential Council action.

2024 State of the Ecosystem Report—Dr. Sarah Gaichas, NEFSC

Review and provide feedback.

2024 Ecosystem Approach to Fisheries Management (EAFM) Risk Assessment Report

Review draft report and provide feedback for further development.

Habitat Activities Update—Greater Atlantic Regional Fisheries Office Habitat and Ecosystem Services Division

Presentation on activities of interest (aquaculture, wind, and other projects) in the region.

Wednesday, April 10, 2024

Joint MAFMC/NEFMC Framework To Reduce Atlantic Sturgeon Interactions in the Monkfish/Dogfish Gillnet Fisheries: Final Action

Review recommendations from the FMAT/PDT, Dogfish and Monkfish Advisory Panels, and joint Dogfish and Monkfish Committee.

Review alternatives and impacts analyses.

Select preferred alternatives and take final action.

NTAP Progress Report for Industry-Based Survey Pilot Program

Review and provide feedback. LUNCH

Golden Tilefish Catch Share Program Review

Review public comments received. Approve program review and submit to NOAA Fisheries.

Review recommendations from the Oversight Team and discuss next steps.

²Best abundance estimate. For most taxa, the best abundance estimate for purposes of comparison with take estimates is considered here to be the model-predicted abundance (Roberts *et al.*, 2016). For those taxa where a density surface model predicting abundance by month was produced, the maximum mean seasonal abundance was used. For those taxa where abundance is not predicted by month, only mean annual abundance is available. For Rice's whale and killer whale, the larger estimated SAR abundance estimate is used.