§ 4274.304 Prior loans.

Any loan made under this program prior to September 2, 2014 may submit to the Agency a written request for an irrevocable election to have the loan serviced in accordance with this subpart.

■ 9. Section 4274.331 is amended by revising paragraph (a)(3)(ii) to read as follows:

§ 4274.331 Loan limits.

* * * *

(a) * * * (3) * * *

(ii) The intermediary is promptly relending all collections from loans made from its IRP revolving fund in excess of what is needed for required debt service, reasonable administrative costs approved by the Agency, and a reasonable reserve for debt service and uncollectible accounts. The intermediary provides documentation to demonstrate that funds available for relending do not exceed the greater of \$150,000 or the total amount of loans closed during a calendar quarter on average, over the last 12 months.

■ 10. Section 4274.332 is amended by revising paragraphs (b)(2) and (b)(4) to read as follows:

§ 4274.332 Post award requirements.

* * * * * (b) * * *

(2) The intermediary must submit an annual budget of proposed administrative costs for Agency approval. The annual budget should itemize cash income and cash out-flow. Projected cash income should consist of, but is not limited to, collection of principal repayment, interest repayment, interest earnings on deposits, fees, and other income. Projected cash out-flow should consist of, but is not limited to, principal and interest payments, reserve for bad debt, and an itemization of administrative costs to operate the IRP revolving fund. Proceeds received from the collection of principal repayment cannot be used for administrative expenses. The amount removed from the IRP revolving fund for administrative costs in any year must be reasonable, must not exceed the actual cost of operating the IRP revolving fund, including loan servicing and providing technical assistance, and must not exceed the amount approved by the Agency in the intermediary's annual budget.

(4) Any cash in the IRP revolving fund from any source that is not needed for debt service, approved administrative costs, or reasonable reserves must be

available for additional loans to ultimate recipients. Funds may not be used for any investments in securities or certificates of deposit of over 30-day duration without the concurrence of Rural Development. If funds in excess of \$250,000 have been unused to make loans to ultimate recipients for 6 months or more, those funds will be returned to Rural Development unless Rural Development provides an exception to the intermediary. Any exception would be based on evidence satisfactory to Rural Development that every effort is being made by the intermediary to utilize the IRP funding in conformance with program objectives.

■ 11. Section 4274.338 is amended by revising paragraph (b)(9) and adding paragraph (b)(10) to read as follows:

*

*

§ 4274.338 Loan agreements between the Agency and the Intermediary.

* * * * (b) * * *

(9) If any part of the loan has not been used in accordance with the intermediary's work plan by a date 3 years from the date of the loan agreement, the Agency may cancel the approval of any funds not yet delivered to the intermediary and the intermediary will return, as an extra payment on the loan, any funds delivered to the intermediary that have not been used by the intermediary in accordance with the work plan. The Agency, at its sole discretion, may allow the intermediary additional time to use the loan funds. Regular loan payments will be based on the amount of funds actually drawn by the intermediary.

(10) For IRP intermediaries, IRP funds in excess of \$250,000 that have not been used to make loans to ultimate recipients for 6 months or more will be returned to Rural Development unless Rural Development provides an exception to the intermediary. Any exception would be based on evidence satisfactory to Rural Development that every effort is being made by the intermediary to utilize the IRP funding in conformance with program objectives.

■ 12. Section 4274.361 is amended by revising paragraph (a) to read as follows:

§ 4274.361 Requests to make loans to ultimate recipients.

(a) An intermediary may use revolved funds to make loans to ultimate recipients in accordance with § 4274.314(b) without obtaining prior Agency concurrence. Prior Agency concurrence is required when an intermediary proposes to use Agency

IRP loan funds to make a loan to an ultimate recipient.

Dated: May 20, 2014.

Douglas J. O'Brien.

Deputy Under Secretary, Rural Development.

Dated: May 15, 2014.

Michael T. Scuse,

Under Secretary, Farm and Foreign Agricultural Services.

[FR Doc. 2014-12632 Filed 6-2-14; 8:45 am]

BILLING CODE 3410-XY-P

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 25

[Docket No. FAA-2014-0329; Notice No. 25-14-03-SC]

Special Conditions: Bombardier Aerospace, Models BD-500-1A10 and BD-500-1A11 Series Airplanes; Tire Debris Impacts to Fuel Tanks

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Notice of proposed special conditions.

SUMMARY: This action proposes special conditions for the Bombardier Aerospace Models BD-500-1A10 and BD-500-1A11 series airplanes. These airplanes will have a novel or unusual design feature associated with the use of carbon fiber reinforced plastic (CFRP) for most of the wing fuel tank structure, which, when impacted by tire debris, may resist penetration or rupture differently from aluminum wing skins. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These proposed special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

DATES: Send your comments on or before July 18, 2014.

ADDRESSES: Send comments identified by docket number FAA–2014–0329 using any of the following methods:

- Federal eRegulations Portal: Go to http://www.regulations.gov/and follow the online instructions for sending your comments electronically.
- Mail: Send comments to Docket Operations, M–30, U.S. Department of Transportation (DOT), 1200 New Jersey Avenue SE., Room W12–140, West Building Ground Floor, Washington, DC 20590–0001.

- Hand Delivery or Courier: Take comments to Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC between 9 a.m. and 5 p.m., Monday through Friday, except federal holidays.
- Fax: Fax comments to Docket Operations at 202–493–2251.

Privacy: The FAA will post all comments it receives, without change, to http://www.regulations.gov/, including any personal information the commenter provides. Using the search function of the docket Web site, anyone can find and read the electronic form of all comments received into any FAA docket, including the name of the individual sending the comment (or signing the comment for an association, business, labor union, etc.). DOT's complete Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as at http://DocketsInfo.dot.

Docket: Background documents or comments received may be read at http://www.regulations.gov/at any time. Follow the online instructions for accessing the docket or go to the Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC between 9 a.m. and 5 p.m., Monday through Friday, except federal holidays.

FOR FURTHER INFORMATION CONTACT:

Margaret Langsted, FAA, Propulsion and Mechanical Systems Branch, ANM–112, Transport Airplane Directorate, Aircraft Certification Service, 1601 Lind Avenue SW., Renton, Washington, 98057–3356; telephone 425–227–2677; facsimile 425–227–1149.

SUPPLEMENTARY INFORMATION:

Comments Invited

We invite interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data.

We will consider all comments we receive on or before the closing date for comments. We may change these special conditions based on the comments we receive.

Background

On December 10, 2009, Bombardier Aerospace applied for a type certificate for their new Models BD–500–1A10 and BD–500–1A11 series airplanes (hereafter collectively referred to as "CSeries"). The CSeries airplanes are swept-wing

monoplanes with an aluminum alloy fuselage sized for 5-abreast seating. Passenger capacity is designated as 110 for the Model BD–500–1A10 and 125 for the Model BD–500–1A11. Maximum takeoff weight is 131,000 pounds for the Model BD–500–1A10 and 144,000 pounds for the Model BD–500–1A11.

Type Certification Basis

Under the provisions of Title 14, Code of Federal Regulations (14 CFR) 21.17, Bombardier Aerospace must show that the CSeries airplanes meet the applicable provisions of part 25, as amended by Amendments 25–1 through 25–129 thereto.

If the Administrator finds that the applicable airworthiness regulations (i.e., 14 CFR part 25) do not contain adequate or appropriate safety standards for the CSeries airplanes because of a novel or unusual design feature, special conditions are prescribed under the provisions of § 21.16.

Special conditions are initially applicable to the model for which they are issued. Should the type certificate for that model be amended later to include any other model that incorporates the same or similar novel or unusual design feature, the special conditions would also apply to the other model under § 21.101.

In addition to the applicable airworthiness regulations and special conditions, the CSeries airplanes must comply with the fuel vent and exhaust emission requirements of 14 CFR part 34 and the noise certification requirements of 14 CFR part 36, and the FAA must issue a finding of regulatory adequacy under § 611 of Public Law 92–574, the "Noise Control Act of 1972."

The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with § 11.38, and they become part of the type-certification basis under § 21.17(a)(2).

Novel or Unusual Design Features

The CSeries airplanes will incorporate the following novel or unusual design features: The use of carbon fiber reinforced plastic (CFRP) for most of the wing fuel tank structure. The ability of aluminum wing skins to resist penetration or rupture when impacted by tire debris is understood from extensive experience, but the ability of CFRP construction to resist these hazards has not been established. There are no existing regulations that adequately establish a level of safety with respect to the performance of the composite materials used in the construction of wing fuel tanks. It requires the consideration of fuel tank penetration, fuel leaks, discrete source

damage tolerance, and the effects of shock waves generated by tire debris impact.

Discussion

Accidents have resulted from uncontrolled fires caused by fuel leaks following penetration or rupture of the lower wing by fragments of tires or from uncontained engine failure. The Concorde accident in 2000 is the most notable example. That accident demonstrated an unanticipated failure mode in an airplane with an unusual transport airplane configuration. Impact to the lower wing surface by tire debris induced pressure waves within the fuel tank that resulted in fuel leakage and fire. Regulatory authorities subsequently required modifications to the Concorde to improve impact resistance of the lower wing or means to retain fuel if the primary fuel retention means is damaged.

In another incident, a Boeing Model 747 tire burst during an aborted takeoff from Honolulu, Hawaii. That tire debris penetrated a fuel tank access cover, causing substantial fuel leakage. Passengers were evacuated down the emergency chutes into pools of fuel that fortunately had not ignited.

These accidents highlight deficiencies in the existing regulations pertaining to fuel retention following impact of the fuel tanks by tire fragments. Following a 1985 Boeing Model 737 accident in Manchester, England, in which a fuel tank access panel was penetrated by engine debris, the FAA amended 14 CFR 25.963 to require fuel tank access panels that are resistant to both tire and engine debris (engine debris is addressed elsewhere). This regulation, § 25.963(e), only addressed the fuel tank access covers since service experience at the time showed that the lower wing skin of a conventional, subsonic airplane provided adequate inherent capability to resist tire and engine debris threats. More specifically, that regulation requires showing by analysis or tests that the access covers ". . . minimize penetration and deformation by tire fragments, low energy engine debris, or other likely debris." Advisory Circular (AC) 25.963-1, Fuel Tank Access Covers, describes the region of the wing that is vulnerable to impact damage from these sources and provides a method to substantiate that the rule has been met for tire fragments. No specific requirements were established for the contiguous wing areas into which the access covers are installed, because of the inherent ability of conventional aluminum wing skins to resist penetration by tire debris. AC 25.963–1 specifically notes, "The access

covers, however, need not be more impact resistant than the contiguous tank structure," highlighting the assumption that the wing structure is more capable of resisting tire impact debris than fuel tank access covers.

In order to maintain the level of safety envisioned by 14 CFR 25.963(e), these special conditions propose a standard for resistance to potential tire debris impacts to the contiguous wing surfaces and require consideration of possible secondary effects of a tire impact, such as the induced pressure wave that was a factor in the Concorde accident. It takes into account that new construction methods and materials will not necessarily yield debris resistance that has historically been shown as adequate. The proposed standard is based on the defined tire impact areas and tire fragment characteristics.

In addition, despite practical design considerations, some uncommon debris larger than that defined in paragraph 2 may cause a fuel leak within the defined area, so paragraph 3 of these proposed special conditions also takes into consideration possible leakage paths. Fuel tank surfaces of typical transport airplanes have thick aluminum construction in the tire debris impact areas that is tolerant to tire debris larger than that defined in paragraph 2 of these special conditions. Consideration of leaks caused by larger tire fragments is needed to ensure that an adequate level of safety is provided.

These proposed special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

Applicability

As discussed above, these special conditions are applicable to the BD–500–1A10 and BD–500–1A11 (CSeries) airplanes. Should Bombardier Aerospace apply at a later date for a change to the type certificate to include another model incorporating the same novel or unusual design feature, the special conditions would apply to that model as well.

Conclusion

This action affects only certain novel or unusual design features on one model series of airplanes. It is not a rule of general applicability.

List of Subjects in 14 CFR Part 25

Aircraft, Aviation safety, Reporting and recordkeeping requirements.

The authority citation for these special conditions is as follows:

Authority: 49 U.S.C. 106(g), 40113, 44701, 44702, 44704.

The Proposed Special Conditions

Accordingly, the Federal Aviation Administration (FAA) proposes the following special conditions as part of the type certification basis for Bombardier Aerospace BD–500–1A10 and BD–500–1A11 (CSeries) airplanes.

Tire Debris Impacts to Fuel Tanks

- 1. Impacts by tire debris to any fuel tank or fuel system component located within 30 degrees to either side of wheel rotational planes may not result in penetration or otherwise induce fuel tank deformation, rupture (for example, through propagation of pressure waves), or cracking sufficient to allow a hazardous fuel leak. A hazardous fuel leak results if debris impact to a fuel tank surface causes a
 - a. Running leak,
 - b. Dripping leak, or
- c. Leak that, 15 minutes after wiping dry, results in a wetted airplane surface exceeding 6 inches in length or diameter.

The leak must be evaluated under maximum fuel head pressure.

- 2. Compliance with paragraph 1 must be shown by analysis or tests assuming all of the following:
- a. The tire debris fragment size is 1 percent of the tire mass.
- b. The tire debris fragment is propelled at a tangential speed that could be attained by a tire tread at the airplane flight manual airplane rotational speed (V_R at maximum gross weight).
- c. The tire debris fragment load is distributed over an area on the fuel tank surface equal to $1\frac{1}{2}$ percent of the total tire tread area.
- 3. Fuel leaks caused by impact from tire debris larger than that specified in paragraph 2, from any portion of a fuel tank or fuel system component located within the tire debris impact area defined in paragraph 1, may not result in hazardous quantities of fuel entering any of the following areas of the airplane:
 - a. Engine inlet,
 - b. Auxiliary power unit inlet, or
 - c. Cabin air inlet.

This must be shown by test or analysis, or a combination of both, for each approved engine forward thrust condition and each approved reverse thrust condition. Issued in Renton, Washington, on May 15, 2014.

Michael Kaszycki,

Acting Manager, Transport Airplane Directorate, Aircraft Certification Service. [FR Doc. 2014–12691 Filed 6–2–14; 8:45 am] BILLING CODE 4910–13–P

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 39

[Docket No. FAA-2014-0338; Directorate Identifier 2014-CE-010-AD]

RIN 2120-AA64

Airworthiness Directives; Piper Aircraft, Inc. Airplanes

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Notice of proposed rulemaking (NPRM).

summary: We propose to adopt a new airworthiness directive (AD) for certain Piper Aircraft, Inc. Model PA–31–350 airplanes. This proposed AD was prompted by a report of an engine fire caused by a leak in the fuel pump inlet hose. This proposed AD would require inspecting the fuel hose assembly and the turbocharger support assembly for proper clearance between them, inspecting each assembly for any sign of damage, and making any necessary repairs or replacements. We are proposing this AD to correct the unsafe condition on these products.

DATES: We must receive comments on this proposed AD by July 18, 2014.

ADDRESSES: You may send comments, using the procedures found in 14 CFR 11.43 and 11.45, by any of the following methods:

- Federal eRulemaking Portal: Go to http://www.regulations.gov. Follow the instructions for submitting comments.
 - Fax: 202-493-2251.
- Mail: U.S. Department of Transportation, Docket Operations, M— 30, West Building Ground Floor, Room W12–140, 1200 New Jersey Avenue SE., Washington, DC 20590.
- Hand Delivery: Deliver to Mail address above between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

For service information identified in this proposed AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach, Florida 32960; telephone: (772) 567–4361; fax: (772) 978–6573; Internet: www.piper.com/home/pages/Publications.cfm. You may review copies of the referenced service