³The ODEQ has adopted this subpart unchanged and applied for delegation of the standard. The subpart was vacated and remanded to the EPA by the United States Court of Appeals for the District of Columbia Circuit. See, Mossville Environmental Action Network v. EPA, 370 F. 3d 1232 (D.C. Cir. 2004). Because of the D.C. Court's holding, this subpart is not delegated to ODEQ at this time.

4 This subpart was issued a partial vacatur by the United States Court of Appeals for the District of Columbia Circuit. See 72 FR 61060 (Octo-

⁵ Final rule. See 76 FR 15608 (March 21, 2011), as amended at 78 FR 7138 (January 31, 2013); 80 FR 72807 (November 20, 2015).

⁶ Final promulgated rule adopted by the EPA. See 80 FR 65470 (October 26, 2015). Part 63 Subpart KKKKK was amended to correct minor typographical errors at 80 FR 75817 (December 4, 2015).

⁷ Final Pule. See 77 FB 2204 (February 10, 2015).

⁷ Final Rule. See 77 FR 9304 (February 16, 2012), as amended 81 FR 20172 (April 6, 2016). Final Supplemental Finding that it is appropriate and necessary to regulate HAP emissions from Coal- and Oil-fired EUSGU Units. See 81 FR 24420 (April 25, 2016).

[FR Doc. 2022-15517 Filed 7-20-22; 8:45 am] BILLING CODE 6560-50-P

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 180

[EPA-HQ-OPP-2020-0296; FRL-9924-01-OCSPP]

Various Fragrance Components: **Exemptions From the Requirement of** a Tolerance

AGENCY: Environmental Protection

Agency (EPA). **ACTION:** Final rule.

SUMMARY: This regulation establishes exemptions from the requirement of a tolerance for residues of various fragrance components listed in unit II of this document when they are used as inert ingredients in antimicrobial pesticide formulations for use on food contact surfaces in public eating places, dairy processing equipment, and food processing equipment and utensils with end-use concentration not to exceed 100 parts per million (ppm). Verto Solutions on behalf of The Clorox Company submitted a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting the establishment of such exemptions from the requirement of a tolerance. This regulation eliminates the need to establish a maximum permissible level for residues of various fragrance components.

DATES: This regulation is effective July 21, 2022. Objections and requests for hearings must be received on or before September 19, 2022, and must be filed in accordance with the instructions provided in 40 CFR part 178 (see also Unit I.C. of the SUPPLEMENTARY INFORMATION).

ADDRESSES: The docket for this action, identified by docket identification (ID) number EPA-HQ-OPP-2020-0296, is available at https://www.regulations.gov or at the Office of Pesticide Programs Regulatory Public Docket (OPP Docket) in the Environmental Protection Agency Docket Center (EPA/DC), West William

Jefferson Clinton Bldg., Rm. 3334, 1301 Constitution Ave. NW, Washington, DC 20460-0001. The Public Reading Room is open from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal holidays. The telephone number for the Public Reading Room and the OPP Docket is (202) 566-1744. For the latest status information on EPA/DC services, docket access, visit https:// www.epa.gov/dockets.

FOR FURTHER INFORMATION CONTACT:

Marietta Echeverria, Registration Division (7505P), Office of Pesticide Programs, Environmental Protection Agency, 1200 Pennsylvania Ave. NW, Washington, DC 20460-0001; main telephone number: (202) 566-1030; email address: RDFRNotices@epa.gov.

SUPPLEMENTARY INFORMATION:

I. General Information

A. Does this action apply to me?

You may be potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide manufacturer. The following list of North American Industrial Classification System (NAICS) codes is not intended to be exhaustive, but rather provides a guide to help readers determine whether this document applies to them. Potentially affected entities may include:

- Animal production (NAICS code 112).
- Food manufacturing (NAICS code 311).
- Pesticide manufacturing (NAICS code 32532).

B. How can I get electronic access to other related information?

You may access a frequently updated electronic version of 40 CFR part 180 through the Office of the Federal Register's e-CFR site at https:// www.ecfr.gov/current/title-40.

C. How can I file an objection or hearing

Under FFDCA section 408(g), 21 U.S.C. 346a, any person may file an objection to any aspect of this regulation and may also request a hearing on those objections. You must file your objection or request a hearing on this regulation in accordance with the instructions

provided in 40 CFR part 178. To ensure proper receipt by EPA, you must identify docket ID number EPA-HQ-OPP-2020-0296 in the subject line on the first page of your submission. All objections and requests for a hearing must be in writing and must be received by the Hearing Clerk on or before September 19, 2022. Addresses for mail and hand delivery of objections and hearing requests are provided in 40 CFR 178.25(b).

In addition to filing an objection or hearing request with the Hearing Clerk as described in 40 CFR part 178, please submit a copy of the filing (excluding any Confidential Business Information (CBI)) for inclusion in the public docket. Information not marked confidential pursuant to 40 CFR part 2 may be disclosed publicly by EPA without prior notice. Submit the non-CBI copy of your objection or hearing request, identified by docket ID number EPA-HQ-OPP-2020–0296, by one of the following methods:

- Federal eRulemaking Portal: https://www.regulations.gov. Follow the online instructions for submitting comments. Do not submit electronically any information you consider to be CBI or other information whose disclosure is restricted by statute.
- Mail: OPP Docket, Environmental Protection Agency Docket Center (EPA/ DC), (28221T), 1200 Pennsylvania Ave. NW, Washington, DC 20460-0001.
- Hand Delivery: To make special arrangements for hand delivery or delivery of boxed information, please follow the instructions at https:// www.epa.gov/dockets/contacts.html.

Additional instructions on commenting or visiting the docket, along with more information about dockets generally, is available at https:// www.epa.gov/dockets.

II. Petition for Exemption

In the **Federal Register** of June 24, 2020 (85 FR 37807) (FRL-10010-82), EPA issued a document pursuant to FFDCA section 408, 21 U.S.C. 346a, announcing the filing of a pesticide petition (PP IN-11018) by Verto Solutions on behalf of The Clorox Company, 4900 Johnson Dr., Pleasanton, CA 94588. The petition requested that 40 CFR 180.940(a) be amended by

establishing an exemption from the requirement of a tolerance for residues of acetaldehyde ethyl cis- 3-hexenyl acetal (CAS Reg. No. 28069-74-1), (tri-)acetin (CAS Reg. No. 102–76–1), acetophenone (ČAS Reg. No. 98–86–2), allyl alpha-ionone (CAS Reg. No. 79-78-7), benzaldehyde (CAS Reg. No. 100-52-7), benzyl alcohol (CAS Reg. No. 100-51-6), benzyl butyrate (CAS Reg. No. 103-37-7), benzyl isobutyrate (CAS Reg. No. 103-28-6), benzyl propionate (CAS Reg. No. 122-63-4), carvacrol (CAS Reg. No. 499-75-2), cinnamaldehyde (CAS Reg. No. 104-55-2), cinnamyl alcohol (CAS Reg. No. 104-54-1), cuminaldehyde (CAS Reg. No. 122-03-2), diethyl malonate (CAS Reg. No. 105-53-3), 1,1-diethoxy-3,7dimethylocta-2,6-diene (CAS Reg. No. 7492–66–2), dihydro-beta-ionone (CAS Reg. No. 17283-81-7), dihydrocarvyl acetate (CAS Reg. No. 20777-49-5), ethyl acetoacetate (CAS Reg. No. 141-97-9), ethyl benzoate (CAS Reg. No. 93-89–0), ethylene brassylate (CAS Reg. No. 105-95-3), ethyl salicylate (CAS Reg. No. 118-61-6), 4-formy-l-2methoxyphenyl 2- methylpropanoate; vanillin isobutyrate (CAS Reg. No. 20665–85–4), hydroxycitronellal (CAS Reg. No. 107-75-5), hydroxycitronellol (CAS Reg. No. 107-74-4), 4-(phydroxyphenyl)-2- butanone (CAS Reg. No. 5471-51-2), pmethoxybenzaldehyde (CAS Reg. No. 123–11–5), 2-methoxy-4- propylphenol (CAS Reg. No. 2785–87–7), 4'methylacetophenone (CAS Reg. No. 122-00-9), alpha-methylbenzyl acetate (CAS Reg. No. 93-92-5), alphamethylbenzyl alcohol (CAS Reg. No. 98-85-1), methyl benzoate (CAS Reg. No. 93-58-3), alphamethylcinnamaldehyde (CAS Reg. No. 101-39-3), methyl cinnamate (CAS Reg. No. 103-26-4), 5-methyl-2-hepten-4one (CAS Reg. No. 81925-81-7), alphaiso-methylionone (CAS Reg. No. 127-51-5), methyl salicylate (CAS Reg. No. 119-36-8), cis-6-nonenal (CAS Reg. No. 2277-19-2), cis-6-nonen-1-ol (CAS Reg. No. 35854-86-5), octanal dimethyl acetal (CAS Reg. No. 10022–28–3), phenethyl acetate (CAS Reg. No. 103-45–7), phenethyl alcohol (ČAS Reg. No. 60-12-8), phenethyl isobutyrate (CAS Reg. No. 103-48-0), phenethyl phenylacetate (CAS Reg. No. 102-20-5), phenylacetaldehyde dimethyl acetal (CAS Reg. No. 101-48-4), 3-phenyl-1propanol (CAS Reg. No. 122-97-4), 1-(2,6,6-trimethylcyclohexa-1,3-dienyl)-2buten-1-one (CAS Reg. No. 23696-85-7), delta-1-(2,6,6-trimethyl- 3cyclohexen-1-yl)-2- buten-1-one (CAS Reg. No. 57378-68-4), triethyl citrate (CAS Reg. No. 77-93-0), thiogeraniol

(CAS Reg. No. 39067-80-6), thymol (CAS Reg. No. 89-83-8), vanillin (CAS Reg. No. 121–33–5), veratraldehyde (CAS Reg. No. 120–14–9) when used as an inert ingredient fragrance component in pesticide formulations applied to food contact surfaces in public eating places, dairy processing equipment, and food processing equipment with enduse concentrations not to exceed 100 ppm. That document referenced a summary of the petition prepared by Verto Solutions on behalf of The Clorox Company, the petitioner, which is available in the docket, https:// www.regulations.gov/docket/EPA-HQ-*OPP-2020-0296.* There were no comments received in response to the notice of filing.

III. Inert Ingredient Definition

Inert ingredients are all ingredients that are not active ingredients as defined in 40 CFR 153.125 and include, but are not limited to, the following types of ingredients (except when they have a pesticidal efficacy of their own): Solvents such as alcohols and hydrocarbons; surfactants such as polyoxyethylene polymers and fatty acids; carriers such as clay and diatomaceous earth; thickeners such as carrageenan and modified cellulose; wetting, spreading, and dispersing agents; propellants in aerosol dispensers; microencapsulating agents; and emulsifiers. The term "inert" is not intended to imply nontoxicity; the ingredient may or may not be chemically active. Generally, EPA has exempted inert ingredients from the requirement of a tolerance based on the low toxicity of the individual inert ingredients.

IV. Aggregate Risk Assessment and Determination of Safety

Section 408(c)(2)(A)(i) of FFDCA allows EPA to establish an exemption from the requirement for a tolerance (the legal limit for a pesticide chemical residue in or on a food) only if EPA determines that the tolerance is "safe." Section 408(b)(2)(A)(ii) of FFDCA defines "safe" to mean that "there is a reasonable certainty that no harm will result from aggregate exposure to the pesticide chemical residue, including all anticipated dietary exposures and all other exposures for which there is reliable information." This includes exposure through drinking water and in residential settings but does not include occupational exposure. Section 408(b)(2)(C) of FFDCA requires EPA to give special consideration to exposure of infants and children to the pesticide chemical residue in establishing a tolerance and to "ensure that there is a

reasonable certainty that no harm will result to infants and children from aggregate exposure to the pesticide chemical residue. . . ."

EPA establishes exemptions from the requirement of a tolerance only in those cases where it can be clearly demonstrated that the risks from aggregate exposure to pesticide chemical residues under reasonably foreseeable circumstances will pose no harm to human health. In order to determine the risks from aggregate exposure to pesticide inert ingredients, the Agency considers the toxicity of the inert in conjunction with possible exposure to residues of the inert ingredient through food, drinking water, and through other exposures that occur as a result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will result from aggregate exposure to the inert ingredient, an exemption from the requirement of a tolerance may be established.

Consistent with FFDCA section 408(c)(2)(A), and the factors specified in FFDCA section 408(c)(2)(B), EPA has reviewed the available scientific data and other relevant information in support of this action. EPA has sufficient data to assess the hazards of and to make a determination on aggregate exposure for various fragrance components including exposure resulting from the exemption established by this action. EPA's assessment of exposures and risks associated with various fragrance components follows.

A. Toxicological Profile

EPA has evaluated the available toxicity data and considered their validity, completeness, and reliability as well as the relationship of the results of the studies to human risk. EPA has also considered available information concerning the variability of the sensitivities of major identifiable subgroups of consumers, including infants and children. Specific information on the studies received for the various fragrance components are discussed in this unit.

The Agency assessed these fragrance components via the Threshold of Toxicological Concern (TTC) approach as outlined by the European Food Safety Authority (EFSA) in their 2019 guidance document on the use of TTC in food safety assessment. Information regarding the database of studies and chemicals used to derive TTCs are reviewed therein. The TTC approach has been used by the Joint Expert Committee on

Food Additives of the U.N.'s Food and Agriculture Organization and the World Health Organization, the former Scientific Committee on Food of the European Commission, the European Medicines Agency, and EFSA.

Information from JECFA reports as well as predictive toxicology using the OECD QSAR Toolbox was used to confirm that the fragrances listed in Unit II have low carcinogenic potential and are thus good candidates for the application of the TTC method. Although 13 chemicals had carcinogenicity alerts, JECFA concluded and EPA concurs that all fragrances listed in unit II have low carcinogenic potential, based on *in vitro* and/or *in vivo* genotoxicity studies available. Therefore, the TTC method can be applied to these fragrances.

TTCs are derived from a conservative and rigorous approach developed by Munro and Kroes to establish generic threshold values for human exposure at which a very low probability of adverse effects is likely. By comparing a range of compounds by Cramer Class (classes I, II, and III) and NOEL (no-observed-effect-level), fifth percentile NOELs were established for each Cramer Class as "Human Exposure Thresholds".

These values were 3, 0.91 and 0.15 mg/kg/day for classes I, II, and III, respectively.

B. Toxicological Points of Departure/ Levels of Concern

Once a pesticide's toxicological profile is determined, EPA identifies toxicological points of departure (POD) and levels of concern to use in evaluating the risk posed by human exposure to the pesticide. For hazards that have a threshold below which there is no appreciable risk, the toxicological POD is used as the basis for derivation of reference values for risk assessment. PODs are developed based on a careful analysis of the doses in each toxicological study to determine the dose at which no adverse effects are observed (the NOAEL) and the lowest dose at which adverse effects of concern are identified (the LOAEL). Uncertainty/ safety factors are used in conjunction with the POD to calculate a safe exposure level—generally referred to as a population-adjusted dose (PAD) or a reference dose (RfD)—and a safe margin of exposure (MOE). For non-threshold risks, the Agency assumes that any amount of exposure will lead to some degree of risk. Thus, the Agency estimates risk in terms of the probability of an occurrence of the adverse effect expected in a lifetime. For more information on the general principles EPA uses in risk characterization and a

complete description of the risk assessment process, see https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/overview-risk-assessment-pesticide-program.

The human exposure threshold value for threshold (*i.e.*, non-cancer) risks is based upon Cramer structural class. In the case of the fragrance components listed above, all the substances included are in the Cramer Class I category, which is defined as chemicals of simple structure and efficient modes of metabolism, suggesting low oral toxicity.

Therefore, the NOEL of 3 mg/kg/day is selected as the point of departure for all exposure scenarios assessed (chronic dietary, incidental oral, dermal and inhalation exposures).

C. Exposure Assessment

1. Dietary exposure from food and feed uses. Dietary exposure (food and drinking water) may occur from the existing (non-food) and proposed uses of fragrance components listed in unit II (e.g., eating foods treated with pesticide formulations containing these fragrances, and drinking water exposures). In evaluating dietary exposure to each of the fragrance components listed in Unit II, EPA considered exposure under the proposed tolerance exemptions at a concentration not to exceed 100 ppm for each of the fragrance components listed in Unit II. as well as any other sources of dietary exposure. EPA assessed dietary exposures from various fragrance components in food as follows:

The dietary assessment for food contact sanitizer solutions calculated the Daily Dietary Dose (DDD) and the Estimated Daily Intake (EDI). The assessment considered: Application rates, residual solution or quantity of solution remaining on the treated surface without rinsing with potable water, surface area of the treated surface which comes into contact with food, pesticide migration fraction, and body weight. These assumptions are based on Food and Drug Administration (FDA) guidelines.

2. Dietary exposure from drinking water. For the purpose of the screening level dietary risk assessment to support this request for an exemption from the requirement of a tolerance for various fragrance components a conservative drinking water concentration value of 100 ppb based on screening level modeling was used to assess the contribution to drinking water for the chronic dietary risk assessments for parent compound. These values were

directly entered into the dietary exposure model.

3. Residential exposure. The term "residential exposure" is used in this document to refer to non-occupational, non-dietary exposure (e.g., textiles (clothing and diapers), carpets, swimming pools, and hard surface disinfection on walls, floors, tables). The fragrance components listed in Unit II may be used as inert ingredients in products that are registered for specific uses that may result in residential exposure, such as pesticides used in and around the home. The Agency conducted a conservative assessment of potential residential exposure by assessing various fragrance components in disinfectant-type uses (indoor scenarios). The Agency's assessment of adult residential exposure combines high-end dermal and inhalation handler exposure from indoor hard surface, wiping and aerosol spray. The Agency's assessment of children's residential exposure includes total post-application exposures associated with total exposures associated with contact with treated indoor surfaces (dermal and hand-to-mouth exposures).

4. Cumulative effects from substances with a common mechanism of toxicity. Section 408(b)(2)(D)(v) of FFDCA requires that, when considering whether to establish, modify, or revoke a tolerance, the Agency consider "available information" concerning the cumulative effects of a particular pesticide's residues and "other substances that have a common mechanism of toxicity."

EPA has not made a common mechanism of toxicity finding as to these fragrance chemicals listed in unit II and any other substances, and these fragrance chemicals do not appear to produce toxic metabolites produced by other substances. For the purposes of this tolerance action, therefore, EPA has not assumed that these fragrance chemicals listed in unit II have a common mechanism of toxicity with other substances. For information regarding EPA's efforts to determine which chemicals have a common mechanism of toxicity and to evaluate the cumulative effects of such chemicals, see EPA's website at https:// www.epa.gov/pesticides/cumulative.

D. Safety Factor for Infants and Children

FFDCA Section 408(b)(2)(C) provides that EPA shall retain an additional tenfold (10X) margin of safety for infants and children in the case of threshold effects to account for prenatal and postnatal toxicity and the completeness of the database on toxicity and exposure unless EPA determines based on reliable data that a different margin of safety will be safe for infants and children. This additional margin of safety is commonly referred to as the FQPA safety factor (SF). In applying this provision, EPA either retains the default value of 10X, or uses a different additional safety factor when reliable data available to EPA support the choice of a different factor. The FQPA SF has been reduced to 1X in this risk assessment because clear NOELs and LOELs were established in the studies analyzed by Munro et al 1996 (which included developmental and reproductive toxicity studies), maternal and developmental-specific 5th percentile NOAELs calculated by van Ravenzwaay et al 2011 indicate low potential for offspring susceptibility, and the conservative assumptions made in the exposure assessment are unlikely to underestimate risk.

E. Aggregate Risks and Determination of Safety

EPA determines whether acute and chronic dietary pesticide exposures are safe by comparing aggregate exposure estimates to the acute PAD (aPAD) and chronic PAD (cPAD). For linear cancer risks, EPA calculates the lifetime probability of acquiring cancer given the estimated aggregate exposure. Short-, intermediate-, and chronic-term risks are evaluated by comparing the estimated aggregate food, water, and residential exposure to the appropriate PODs to ensure that an adequate MOE exists.

- 1. Acute aggregate risk. An acute aggregate risk assessment takes into account acute exposure estimates from dietary consumption of food and drinking water. No adverse effects resulting from a single oral exposure were identified and no acute dietary endpoint were selected for any of the fragrance components. Therefore, the fragrance components listed in Unit II are not expected to pose an acute risk.
- 2. Short-term aggregate risk. Shortterm aggregate exposure takes into account short-term residential exposure plus chronic exposure to food and water (considered to be a background exposure level). For residential handler short-term exposure scenarios, MOEs ranged from 140 to 2,500, while residential post-application exposure scenarios MOEs ranged from 380 to 7,400. These MOEs are greater than the LOC of 100 and therefore are not of concern. The short-term aggregate MOE is 109 for adults and 135 for children, which are greater than the LOC of 100 and therefore are not of concern.

- 3. Intermediate-term risk. Intermediate-term aggregate exposure takes into account intermediate-term residential exposure plus chronic exposure to food and water (considered to be a background exposure level). An intermediate-term adverse effect was identified; however, the fragrance components listed in Unit II are not currently used as an inert ingredient in pesticide products that are registered for any use patterns that would result in intermediate-term residential exposure. Intermediate-term risk is assessed based on intermediate-term residential exposure plus chronic dietary exposure. Because there is no intermediate-term residential exposure and chronic dietary exposure has already been assessed under the appropriately protective cPAD (which is at least as protective as the POD used to assess intermediateterm risk), no further assessment of intermediate-term risk is necessary, and EPA relies on the chronic dietary risk assessment for evaluating intermediateterm risk for various fragrance components.
- 4. Chronic aggregate risk. Using the exposure assumptions described in this unit for chronic exposure, EPA has concluded that chronic exposure to the fragrance components listed in Unit II from food and water will utilize 19% of the chronic PAD (cPAD) for the U.S. population and 48% of the cPAD for children 1 to 2 years old, the population group receiving the greatest exposure. Chronic residential exposure to residues of benoxacor is not expected. Therefore, the chronic aggregate risk is equal to the chronic dietary exposure for children 1 to 2 years old (48% of the PAD).
- 5. Aggregate cancer risk for Ú.S. population. There is low concern for genotoxicity/carcinogenicity in humans for the fragrance components listed in Unit II of this document. Therefore, the assessment under the TTC value for non-cancer risks is protective for all risks, including carcinogenicity.
- 6. Determination of safety. Based on these risk assessments, EPA concludes that there is a reasonable certainty that no harm will result to the general population, or to infants and children from aggregate exposure to residues of the fragrance components listed in Unit II.

V. Other Considerations

A. Analytical Enforcement Methodology

An analytical method is not required for enforcement purposes since the Agency is not establishing a numerical tolerance for fragrances listed in unit II of this document in or on any food commodities. EPA is establishing a limitation on the amount of the fragrances listed in unit II that may be used in antimicrobial pesticide formulations. This limitations will be enforced through the pesticide registration process under the Federal Insecticide, Fungicide, and Rodenticide Act ("FIFRA"), 7 U.S.C. 136 et seq. EPA will not register any pesticide formulation for food use that exceeds 100ppm of fragrances listed in unit II in the final pesticide formulation.

B. International Residue Limits

In making its tolerance decisions, EPA seeks to harmonize U.S. tolerances with international standards whenever possible, consistent with U.S. food safety standards and agricultural practices. EPA considers the international maximum residue limits (MRLs) established by the Codex Alimentarius Commission (Codex), as required by FFDCA section 408(b)(4). The Codex Alimentarius is a joint United Nation Food and Agriculture Organization/World Health Organization food standards program, and it is recognized as an international food safety standards-setting organization in trade agreements to which the United States is a party. EPA may establish a tolerance that is different from a Codex MRL; however, FFDCA section 408(b)(4) requires that EPA explain the reasons for departing from the Codex level.

The Codex has not established a MRL for the fragrance components listed in Unit II.

VI. Conclusions

Therefore, an exemption from the requirement of a tolerance is established under 40 CFR 180.940(a) for acetaldehyde ethyl cis- 3-hexenyl acetal (CAS Reg. No. 28069-74-1), (tri-)acetin (CAS Reg. No. 102–76–1), acetophenone (CAS Reg. No. 98-86-2), allyl alphaionone (CAS Reg. No. 79-78-7), benzaldehyde (CAS Reg. No. 100-52-7), benzyl alcohol (CAS Reg. No. 100-51-6), benzyl butyrate (CAS Reg. No. 103-37–7), benzyl isobutyrate (CAS Reg. No. 103–28–6), benzyl propionate (CAS Reg. No. 122-63-4), carvacrol (CAS Reg. No. 499-75-2), cinnamic aldehyde (cinnamaldehyde) (CAS Reg. No. 104-55-2), cinnamic alcohol (cinnamyl alcohol) (CAS Reg. No. 104-54-1), cuminaldehyde (CAS Reg. No. 122–03– 2), diethyl malonate (CAS Reg. No. 105-53-3), 1,1-diethoxy-3,7- dimethylocta-2,6-diene (CAS Reg. No. 7492-66-2), dihydro-beta-ionone (CAS Reg. No. 17283–81–7), dihydrocarvyl acetate (CAS Reg. No. 20777-49-5), butanoic acid, 3-oxo-, ethyl ester (ethyl acetoacetate) (CAS Reg. No. 141-97-9),

benzoic acid, ethyl ester (ethyl benzoate) (CAS Reg. No. 93-89-0), ethylene brassylate (CAS Reg. No. 105-95-3), ethyl salicylate (CAS Reg. No. 118-61-6), propanoic acid, 2-methyl-, 4formyl-2-methoxyphenyl ester (4-formy-1-2- methoxyphenyl 2methylpropanoate; vanillin isobutyrate) (CAS Reg. No. 20665-85-4), hydroxycitronellal (CAS Reg. No. 107-75-5), hydroxycitronellol (CAS Reg. No. 107-74-4), 4-(p-hydroxyphenyl)-2butanone (CAS Reg. No. 5471-51-2), benzaldehyde, 4-methoxy- (pmethoxybenzaldehyde) (CAS Reg. No. 123-11-5), 2-methoxy-4- propylphenol (CAS Reg. No. 2785–87–7), 4'methylacetophenone (CAS Reg. No. 122-00-9), benzenemethanol, alphamethyl-, 1-acetate (alpha-methylbenzyl acetate) (CAS Reg. No. 93-92-5), alphamethylbenzyl alcohol (CAS Reg. No. 98-85-1), methyl benzoate (CAS Reg. No. 93-58-3), alphamethylcinnamaldehyde (CAS Reg. No. 101-39-3), methyl cinnamate (CAS Reg. No. 103-26-4), 2-hepten-4-one, 5methyl- (5-methyl-2-hepten-4- one) (CAS Reg. No. 81925-81-7), 3-buten-2one, 3-methyl-4-(2,6,6-trimethyl-2cyclohexen-1-yl)- (alpha-isomethylionone) (CAS Reg. No. 127-51-5), methyl salicylate (CAS Reg. No. 119-36-8), 6-nonenal, (6Z)- (cis-6-nonenal) (CAS Reg. No. 2277-19-2), cis-6-nonen-1-ol (CAS Reg. No. 35854-86-5), octanal dimethyl acetal (CAS Reg. No. 10022-28-3), phenethyl acetate (CAS Reg. No. 103-45-7), phenyl ethyl alcohol (phenethyl alcohol) (CAS Reg. No. 60-12-8), phenethyl isobutyrate (CAS Reg. No. 103-48-0), phenethyl phenylacetate (CAS Reg. No. 102-20-5), phenylacetaldehyde dimethyl acetal (CAS Reg. No. 101-48-4), 3-phenyl-1propanol (CAS Reg. No. 122-97-4), 2buten-1-one, 1-(2,6,6-trimethyl-1,3cyclohexadien-1-yl)- (1-(2,6,6trimethylcyclohexa-1,3- dienyl)-2-buten-1-one (CAS Reg. No. 23696-85-7), delta-1-(2,6,6-trimethyl- 3-cyclohexen-1-yl)-2buten-1-one (CAS Reg. No. 57378-68-4), triethyl citrate (CAS Reg. No. 77–93– 0), thiogeraniol (CAS Reg. No. 39067-80-6), thymol (8CA) (thymol) (CAS Reg. No. 89-83-8), vanillin (CAS Reg. No. 121-33-5), veratraldehyde (CAS Reg. No. 120-14-9) when used as an inert ingredient (fragrance components) in pesticide formulations applied to food contact surfaces in public eating places, dairy processing equipment, and food processing equipment and utensils with end-use concentration not to exceed 100 ppm.

VII. Statutory and Executive Order Reviews

This action establishes a tolerance under FFDCA section 408(d) in response to a petition submitted to the Agency. The Office of Management and Budget (OMB) has exempted these types of actions from review under Executive Order 12866, entitled "Regulatory Planning and Review" (58 FR 51735, October 4, 1993). Because this action has been exempted from review under Executive Order 12866, this action is not subject to Executive Order 13211, entitled "Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use" (66 FR 28355, May 22, 2001) or Executive Order 13045, entitled "Protection of Children from Environmental Health Risks and Safety Risks" (62 FR 19885, April 23, 1997). This action does not contain any information collections subject to OMB approval under the Paperwork Reduction Act (PRA) (44 U.S.C. 3501 et seq.), nor does it require any special considerations under Executive Order 12898, entitled "Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations" (59 FR 7629, February 16, 1994).

Since tolerances and exemptions that are established on the basis of a petition under FFDCA section 408(d), such as the tolerance in this final rule, do not require the issuance of a proposed rule, the requirements of the Regulatory Flexibility Act (RFA) (5 U.S.C. 601 et seq.), do not apply.

This action directly regulates growers, food processors, food handlers, and food retailers, not States or Tribes, nor does this action alter the relationships or distribution of power and responsibilities established by Congress in the preemption provisions of FFDCA section 408(n)(4). As such, the Agency has determined that this action will not have a substantial direct effect on States or Tribal Governments, on the relationship between the National Government and the States or Tribal Governments, or on the distribution of power and responsibilities among the various levels of government or between the Federal Government and Indian Tribes. Thus, the Agency has determined that Executive Order 13132, entitled "Federalism" (64 FR 43255, August 10, 1999) and Executive Order 13175, entitled "Consultation and Coordination with Indian Tribal Governments" (65 FR 67249, November 9, 2000) do not apply to this action. In addition, this action does not impose any enforceable duty or contain any

unfunded mandate as described under Title II of the Unfunded Mandates Reform Act (UMRA) (2 U.S.C. 1501 *et seq.*).

This action does not involve any technical standards that would require Agency consideration of voluntary consensus standards pursuant to section 12(d) of the National Technology Transfer and Advancement Act (NTTAA) (15 U.S.C. 272 note).

VIII. Congressional Review Act

Pursuant to the Congressional Review Act (5 U.S.C. 801 et seq.), EPA will submit a report containing this rule and other required information to the U.S. Senate, the U.S. House of Representatives, and the Comptroller General of the United States prior to publication of the rule in the **Federal Register**. This action is not a "major rule" as defined by 5 U.S.C. 804(2).

List of Subjects in 40 CFR Part 180

Environmental protection, Administrative practice and procedure, Agricultural commodities, Pesticides and pests, Reporting and recordkeeping requirements.

Dated: July 8, 2022.

Marietta Echeverria,

Acting Director, Registration Division, Office of Pesticide Programs.

Therefore, for the reasons stated in the preamble, EPA is amending 40 CFR chapter I as follows:

PART 180—TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICALS RESIDUES IN FOOD

■ 1. The authority citation for part 180 continues to read as follows:

Authority: 21 U.S.C. 321(q), 346a and 371.

- 2. Section 180.940 is amended by adding in alphabetical order the following inert ingredients to table 1 to paragraph (a):
- a. acetaldehyde ethyl cis-3-hexenyl acetal
- b. Acetophenone
- c. allyl alpha-ionone
- d. Benzaldehyde
- e. benzyl alcohol
- f. benzyl butyrate
- g. benzyl isobutyrate
- h. benzaldehyde, 4-methoxy-
- i. benzenemethanol, alpha-methyl-, 1-acetate
- j. benzoic acid, ethyl ester
- k. butanoic acid, 3-oxo-, ethyl ester
- l. 2-buten-1-one, 1-(2,6,6-trimethyl-
- 1,3-cyclohexadien-1-yl)-
- m. 3-buten-2-one, 3-methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-
- n. Carvacrol
- o. cinnamic aldehyde

- p. cinnamic alcohol
- q. Cuminaldehyde
- r. diethyl malonate
- s. 1,1-diethoxy-3,7-dimethylocta-2,6diene
- t. dihydro-beta-ionone
- u. dihydrocarvyl acetate
- v. ethylene brassylate
- w. ethyl salicylate
- x. glyceryl triacetate
- y. 2-hepten-4-one, 5-methyl-
- lacktriangleq z. Hydroxycitronellal
- aa. Hydroxycitronellol
- bb. 4-(p-hydroxyphenyl)-2-butanone
- cc. 2-methoxy-4-propylphenol
- dd. methyl benzoate

- ee. 4'-methylacetophenone ff. alpha-methylbenzyl alcohol
- lacksquare gg. alpha-methylcinnamaldehyde
- hh. methyl cinnamate
- ii. methyl salicylate
- jj. 6-nonenal, (6Z)-
- kk. cis-6-nonen-1-ol
- ll. octanal dimethyl acetal
- mm. phenethyl acetatenn. phenyl ethyl alcohol
- oo. phenethyl isobutyrate
- pp. phenethyl phenylacetate ■ qq. phenylacetaldehyde dimethyl
- rr. 3-phenyl-1-propanol
- ss. propanoic acid, 2-methyl-, 4formyl-2-methoxyphenyl ester

- tt. triethyl citrate
- uu. delta-1-(2,6,6-trimethyl-3cyclohexen-1-yl)-2-buten-1-
- vv. Thiogeraniol
- ww. thymol (8CA)
- xx. Vanillin
- yy. veratraldehyde The additions read as follows:

§ 180.940 Tolerance exemptions for active and inert ingredients for use in antimicrobial formulations (Food-contact surface sanitizing solutions).

* (a) * * *

TABLE 1 TO PARAGRAPH (a)

Pesticide chemical	CAS Reg. No.	Limits
* *	*	* * *
etaldehyde ethyl cis-3-hexenyl acetal	28069-74-1	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
etophenone	98-86-2	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
yl alpha-ionone	79–78–7	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
enzaldehyde	100-52-7	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
nzyl alcohol	100–51–6	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
nzyl butyrate	103–37–7	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
nzyl isobutyrate	103–28–6	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
nzyl propionate	122–63–4	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
nzaldehyde, 4-methoxy	123–11–5	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
nzenemethanol, alpha-methyl-, 1-ace- tate.	93–92–5	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
nzoic acid, ethyl ester	93–89–0	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
tanoic acid, 3-oxo-, ethyl ester	141–97–9	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
buten-1-one, 1-(2,6,6-trimethyl-1,3- cyclohexadien-1-yl)	23696–85–7	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
buten-2-one, 3-methyl-4-(2,6,6- trimethyl-2-cyclohexen-1-yl)	127–51–5	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
arvacrol	499–75–2	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
nnamic aldehyde	104–55–2	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
nnamic alcohol	104 54 1	When ready for use, the end-use concentration is not to exceed 100 ppm.

TABLE 1 TO PARAGRAPH (a)—Continued

	CAS Reg. No.	Limits
* * Cuminaldehyde	* 122–03–2	* * When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * * *
diethyl malonate	. 105–53–3	When ready for use, the end-use concentration is not to exceed 100 ppm.
* * * 1,1-diethoxy-3,7-dimethylocta-2,6-diene	. 7492–66–2	* * * * When ready for use, the end-use concentration is not to exceed 100 ppm.
* * dihydro-beta-ionone	. 17283–81–7	* * * When ready for use, the end-use concentration is not to exceed 100 ppm.
* * dihydrocarvyl acetate*	. 20777–49–5	* * * When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * *
ethylene brassylate	. 105–95–3	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * *
ethyl salicylate	. 118–61–6	When ready for use, the end-use concentration is not to exceed 100 ppm.
tyceryl triacetate*	. * 102–76–1	* * * When ready for use, the end-use concentration is not to exceed 100 ppm.
* * * 2-hepten-4-one, 5-methyl	. 81925–81–7	* * When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * *
Hydroxycitronellal	. 107–75–5	When ready for use, the end-use concentration is not to exceed 100 ppm.
Hydroxycitronellol*	. 107–74–4	When ready for use, the end-use concentration is not to exceed 100 ppm.
* * 4-(p-hydroxyphenyl)-2-butanone	. 5471–51–2	* * * When ready for use, the end-use concentration is not to exceed 100 ppm.
*	*	* * * *
2-methoxy-4-propylphenol	. 2785–87–7	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * *
methyl benzoate	. 93–58–3	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
4'-methylacetophenone	. 122–00–9	When ready for use, the end-use concentration is not to exceed 100 ppm.
* alpha-methylbenzyl alcohol	* 98_85_1	* * * * * When ready for use, the end-use concentration is not to exceed 100 ppm.
Aprila metry benefit aleener	. 00 00 1	the ready for deet, the one deet contention to her to exceed 100 ppm.
alpha-methylcinnamaldehyde	. 101–39–3	When ready for use, the end-use concentration is not to exceed 100 ppm.
* * methyl cinnamate	. 103–26–4	* * * * When ready for use, the end-use concentration is not to exceed 100 ppm.
* * methyl salicylate	, 119–36–8	* * When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * *
6-nonenal, (6Z)	. 2277–19–2	When ready for use, the end-use concentration is not to exceed 100 ppm.
* * cis-6-nonen-1-ol	. 35854–86–5	* * * * When ready for use, the end-use concentration is not to exceed 100 ppm.
*	*	* * *
octanal dimethyl acetal	. 10022–28–3	When ready for use, the end-use concentration is not to exceed 100 ppm.
* * phenethyl acetate*	* 102_45_7	* * When ready for use, the end-use concentration is not to exceed 100 ppm.
neneuryi acetate	. 103–45–7	which ready for use, the end-use concentration is not to exceed 100 ppm.
* * phenyl ethyl alcohol*	. 60–12–8	* * * * * * When ready for use, the end-use concentration is not to exceed 100 ppm.

Pesticide chemical	CAS Reg. No.	Limits
* *	*	* * * *
henethyl isobutyrate	103–48–0	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
henethyl phenylacetate	102–20–5	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
henylacetaldehyde dimethyl acetal	101–48–4	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
-phenyl-1-propanol	122–97–4	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
propanoic acid, 2-methyl-, 4-formyl-2-methoxyphenyl ester.	20665-85-4	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * *
riethyl citrate	77–93–0	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
lelta-1-(2,6,6-trimethyl-3-cyclohexen-1-yl) 2-buten-1-one.	- 57378–68–4	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * *
hiogeraniol	39067–80–6	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
nymol (8CA)	89–83–8	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
/anillin	121–33–5	When ready for use, the end-use concentration is not to exceed 100 ppm.
* *	*	* * * *
eratraldehyde	120–14–9	When ready for use, the end-use concentration is not to exceed 100 ppm.

[FR Doc. 2022–15017 Filed 7–20–22; 8:45 am] BILLING CODE 6560–50–P

COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED

41 CFR Part 51-4

RIN 3037-AA16

Prohibition on the Payment of Subminimum Wages Under 14(c) Certificates as a Qualification for Participation as a Nonprofit Agency Under the Javits Wagner O'Day Act

AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled.

ACTION: Final rule.

SUMMARY: The Committee for Purchase From People Who Are Blind or Severely Disabled, operating as the U.S. AbilityOne Commission ("Commission"), is publishing a final rule implementing a new requirement that a nonprofit agency (NPA) seeking

both initial and continuing qualification under the Javits Wagner O'Day Act (JWOD Act) to participate in the AbilityOne Program must certify that it will not use certificates authorized under section 14(c) of the Fair Labor Standards Act of 1938 ("14(c) certificates") to pay employees on its AbilityOne contracts. Pursuant to the rule, individuals with significant disabilities and those who are blind employed by participating NPAs, and working on AbilityOne contracts, will earn at least the Federal minimum wage, the applicable local or state minimum wage if higher than the Federal minimum wage, or the applicable prevailing wage for contracts subject to the McNamara-O'Hara Service Contract Act, whichever is highest.

DATES: This final rule is effective October 19, 2022.

FOR FURTHER INFORMATION CONTACT:

Shelly Hammond, Director of Contracting and Policy, by telephone (571) 457–9468 or by email at shammond@abiltyone.gov.

SUPPLEMENTARY INFORMATION:

I. Background

A. The JWOD Act and Implementing Regulations

The JWOD Act leverages the purchasing power of the Federal Government to create employment opportunities through the AbilityOne Program for individuals who are blind or have significant disabilities. The Program is administered by the 15member, presidentially appointed Commission that, as an independent Federal agency, maintains a Procurement List of products and services that Federal agencies must purchase from participating NPAs who employ individuals who are blind or have significant disabilities. See 41 U.S.C. 8503 and 8504. Central nonprofit agencies (CNAs) are responsible for distributing orders to Commissionapproved NPAs to provide products and services to Federal agencies. See CFR 51-2.4(a)(3) & 51-3.4. NPAs must meet initial qualification requirements and maintain those qualifications throughout their participation in the